Researchers develop system to convert one wavelength of light into another without need to phase match

One of the biggest challenges in developing integrated photonic circuits — which use light rather than electrons to transport information — is to control the momentum of light.  Colors of light travel at different speeds through a material but in order for light to be converted between colors, it needs to have the same momentum or phase.

Many devices have been designed to momentum-match or phase-match light at various points throughout an integrated circuit but what if the phase-matching process could be circumvented all together in certain cases?

Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences, together with collaborators from the Fu Foundation School of Engineering and Applied Science at Columbia University, have developed a system to convert one wavelength of light into another without the need to phase match.

“For any wavelength conversion process to be efficient, it has to be carefully designed to phase match, and it only works at a single wavelength,” said Marko Loncar, the Tiantsai Lin Professor of Electrical Engineering at SEAS and senior author of the paper. “The devices shown in this work, in contrast, do not need to satisfy the phase-matching requirement, and can convert light in a broad color range.”

The converter relies on a metasurface, consisting of an array of silicon nanostructures, integrated into a lithium niobate waveguide. The light passes through waveguide, interacting with the nanostructures along the way. The array of nanostructures act like a TV antenna — receiving the optical signal, manipulating its momentum and re-emitting it back into the waveguide.

“Unlike most metasurfaces, where light travels perpendicularly to the metasurface, here light interacts with the metasurface while being confined inside a waveguide,” said Cheng Wang, co-first author of the paper and postdoctoral fellow at SEAS. “In this way, we take advantage of both the momentum control from the metasurface and a long interaction distance.”

Source: seas.harvard.edu

Read more…

Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.